

Temporal Symphony: Meeting the Timing Challenge in Edge Computing

Dakshina Dasari

Research Work at Bosch

Engine Control Transition (Single Core -> Multicore) Vehicle Integration Platforms (Scheduling, Memory contention)

Technology Evaluations (ROS2, QNX, Virtualization platforms)

Predictable Edge-Cloud Orchestration In Industrial Automation

Cloud Native meets Embedded Real-time Computing

•••••••••••

cloud native computing

safety-critical realtime computing

••••••••••

*Breaking Down the Edge Continuum - LF Edge

Convergence of Technologies in the IT/OT world

Meeting the Timing Challenge in Edge Computing The Industrial Metaverse

The Industrial Metaverse is a world ...

- where the physical and the digital worlds co-exist, collaborate
- Playground for Immersive training and AI enabled data-driven decision making
- where **problems** can be **found**, or **discovered before** they arise

The Industrial Metaverse: Virtual Commissioning and Digital Twins

Virtual model of production system: Staging area Simulate the behaviour of the real-system

- Prototype and Validate new concepts
- Seamless transition from design to production

Digital replicas of physical assets/plants

- Real-time data acquisition, monitoring, simulation
- Live Feedback, Predictive Maintenance

Virtual Commissioning

Digital Twin

Common Denominator: Compute Intensive Simulations + Real-time Capabilities

Meeting the Timing Challenge in Edge Computing The Trend of Offloading to the Edge: E/E Architectures

6

Meeting the Timing Challenge in Edge Computing Automotive Domain: In-vehicle Functionality

BOSCH

Meeting the Timing Challenge in Edge Computing Improved Functionality with Function Offloading

Improved Safety Functions by leveraging the power of the Cloud

Meeting the Timing Challenge in Edge Computing Merging both the Worlds

- Embedded software architectures for safety & realtime critical applications are rigid and lack flexibility
 - Applications are hard-baked onto embedded platforms
 - Vendor lock-ins, difficult to migrate, update
- IT software architectures are flexible but do not scale to smaller devices and do lack capabilities to control QoS in a fine-grained manner
 - Containers require hundreds of MB of RAM, suffer from high spin-up times, struggle to multiplex low-level devices (e.g., sensors)

How can we leverage the strengths of both the worlds to create a framework for Reliable Distributed Systems?

Meeting the Timing Challenge in Edge Computing What does not translate well to Edge systems

Internal | 2024-03-24

Meeting the Timing Challenge in Edge Computing A wish-list across the Edge-Cloud Continuum

13

Meeting the Timing Challenge in Edge Computing **Reconciling Performance and Predictability**

Meeting the Timing Challenge in Edge Computing Hardware Mechanisms for Resource Regulation

Memory Bandwidth Monitoring (MBM)

ARM Memory Partitioning And Management

Intel Resource Director Technology

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-neoverse-n2-industry-leading-performance-efficiency

Meeting the Timing Challenge in Edge Computing Hardware Mechanisms for Resource Regulation

ARM Memory Partitioning And Management

ARM Corelink NIC-400 Network Interconnect

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-neoverse-n2-industry-leading-performance-efficiency

Meeting the Timing Challenge in Edge Computing Contention on the CPU ?

QNX Adaptive Partitioning Scheduler

Meeting the Timing Challenge in Edge Computing Need for better execution control mechanisms

- Hard real-time applications (e.g. control)
- Sporadic applications (e.g. predictive powertrain functionalities)
- Applications with dynamic resource requirements (e.g. perception, MPC)

Efficient Temporal Isolation

- Temporal properties of an application shall be independent of other co-executed applications
- Capability to use "all" system resources meaningfully
- No hard and inflexible assignments

Controlled QoS

- Comprehensible abstraction for (computational) resources
- Ensure application progress, prevent starvation
- Ability to compute upper bounds on the response times tasks-chains ("analytically sound")

Meeting the Timing Challenge in Edge Computing Exploring the Network Layer

Increased Performance & Isolation

TSN/DETNET: Need for easier configuration tools!

- Multivendor support

Need for contract based APIs

Network APIs to control Quality of Demand

Meeting the Timing Challenge in Edge Computing Exploring the Virtualization Layer

Meeting the Timing Challenge in Edge Computing Silverline: An Edge Orchestration Framework

- Lightweight virtualization with WebAssembly
 - Enable deployment of applications on arbitrary modern hardware.
 programming paradigm spanning cloud, edge, and device
 - Fast, safe and portable execution semantics
 - Hardware & language independent
- Resource aware orchestration
 - Complexity & dynamic changes during operation require automated management of deployment and resource assignments
 - Deploy Monitor Adapt
 - Enable transparent failover, zero-downtime updates, etc.

Silverline offers IT-like flexibility with embedded qualities

23 internal

Meeting the Timing Challenge in Edge Computing Why is Wasm a promising candidate:

- Wasm is consistently fast (no re-optimization or garbage collection)
- Wasm is safe (sandboxed, memory safe, control flow integrity, fault isolation, no access to code addresses or the call stack, capabilities-based import of external functions)
- Wasm is well-defined and deterministic (No undefined behaviors, no implementation-defined behavior, no machine-dependent behaviors, well-defined traps, no invalid calls, no illegal access to data)
- Wasm is a polyglot (compile safety-critical, real-time applications from low-level languages or even run prototype languages)
- Wasm is an Open Standard
- Wasm is formally defined and provably correct (opens door for certified compilers)

safety-critical, real-time

Meeting the Timing Challenge in Edge Computing WebAssembly Workflow

WebAssembly

Silverline: Framework For Reliable Distributed Systems Virtualization Trends – Architecture View

Reliable Distributed Systems Challenges Application Portability

Virtualization is key to portability

Lots of traction for WASM

Bosch's Silverline WASM Framework Lightweight Virtualization for CPS

DEMO TIME

RESOURCE AWARE ORCHESTRATION

Silverline: A Framework for Reliable Distributed Systems Demo: Edge Cloud Control Over Silverline

- Inverted Pendulum
 - Original Application: Monolithic Application Original application
 - Written in Structured Text (PLC), Needs Codesys proprietary PLC runtime
 - Inflexible deployment
 - Distributed a monolithic application into an I/O and Control Module
 - Ported application to C-> Wasm modules and introduced communication interfaces
 - MQTT in (also achieved via OPC-UA Pub Sub mechanisms in another version)
- Key goals
 - Distributed Control
 - Advanced Features
 - Transparent Failover, Zero DownTime Updates
 - Resource Aware Flexible Deployment
 - Network Isolation

Silverline in Action Setup of Inverted Pendulum Demonstrator

Reliable Distributed Systems for Factory Automation Bosch Research 2023

Silverline in Action Timing Setup

PubSub Mechanism MQTT for Tx, with real-time configuration

Reliable Distributed Systems Nobody can build RDS alone - many competencies are needed

Systems Integration

Embedded Security

IT Security

The complexity of RDS can only be dealt with through partnerships, standardizations

Safety

Meeting the Timing Challenge in Edge Computing Summary: Plethora of Challenges and Opportunities

- What are the right programming abstractions for the Edge ?
- Which virtualization mechanisms are best suited for deploying and migrating applications
 - We considered Webassembly –Byte code format –Polyglot, platform independent.
 - Not the only player in the game !
- Functional Decomposition/Deployment: When, how and where to offload applications
 - How to manage state ?
 - How to decompose legacy applications
- How to build Resilience and enable Edge Autonomy
 - Dealing with Timing Issues (Asynchronous message arrivals, etc)..
- Which mechanisms can be used to guarantee across the edge-cloud continuum
 - Resource reservations in a multi-tenant setup
 - Resource reservations on the network ?
- Lots of avenues for future researchers to change the game!

Meeting the Timing Challenge in Edge Computing References

- Zuepke, A., Bastoni, A., Chen, W., Caccamo, M., & Mancuso, R. (2023). MemPol: Policing Core Memory Bandwidth from Outside of the Cores
- H. Yun, G. Yao, R. Pellizzoni, M. Caccamo and L. Sha, "MemGuard: Memory bandwidth reservation system for efficient performance isolation in multi-core platforms," 2013 IEEE 19th RTAS
- <u>https://docs.kernel.org/scheduler/sched-deadline.html</u>
- Thanks to my collaborators:
 - Franz-Josef Grosch, Arne Hamann, Dirk Ziegenbein, Anthony Rowe, Marco Giani, Patrick Wiener, Fedor Smirnov, Behnaz Pourmohseni

Thanks!!

Discussion Time!

